
 TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by URMILA MAHOR

Unit-iv

Static analysis involves no dynamic execution of the software under test and can detect possible defects

in an early stage, before running the program.

Static analysis is done after coding and before executing unit tests.

Static analysis can be done by a machine to automatically “walk through” the source code and detect

noncomplying rules. The classic example is a compiler which finds lexical, syntactic and even some

semantic mistakes.

Static analysis can also be performed by a person who would review the code to ensure proper coding

standards and conventions are used to construct the program. This is often called Code Review and is

done by a peer developer, someone other than the developer who wrote the code.

Static analysis is also used to force developers to not use risky or buggy parts of the programming

language by setting rules that must not be used.

When developers performs code analysis, they usually look for

 Lines of code

 Comment frequency

 Proper nesting

 Number of function calls

 Cyclomatic complexity

 Can also check for unit tests

Quality attributes that can be the focus of static analysis:

 Reliability

 Maintainability

 Testability

 Re-usability

 Portability

 Efficiency

What are the Advantages of Static Analysis?

 TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by URMILA MAHOR

The main advantage of static analysis is that it finds issues with the code before it is ready for

integration and further testing.

Static code analysis advantages:

It can find weaknesses in the code at the exact location.

It can be conducted by trained software assurance developers who fully understand the code.

Source code can be easily understood by other or future developers

It allows a quicker turn around for fixes

Weaknesses are found earlier in the development life cycle, reducing the cost to fix.

Less defects in later tests

Unique defects are detected that cannot or hardly be detected using dynamic tests

Unreachable code

Variable use (undeclared, unused)

Uncalled functions

Boundary value violations

Static code analysis limitations:

It is time consuming if conducted manually.

Automated tools produce false positives and false negatives.

There are not enough trained personnel to thoroughly conduct static code analysis.

Automated tools can provide a false sense of security that everything is being addressed.

Automated tools only as good as the rules they are using to scan with.

It does not find vulnerabilities introduced in the runtime environment.

What is Dynamic Analysis?

 TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by URMILA MAHOR

In contrast to Static Analysis, where code is not executed, dynamic analysis is based on the system

execution, often using tools.

Dynamic program analysis is the analysis of computer software that is performed with executing

programs built from that software on a real or virtual processor (analysis performed without executing

programs is known as static code analysis). Dynamic program analysis tools may require loading of

special libraries or even recompilation of program code.

The most common dynamic analysis practice is executing Unit Tests against the code to find any errors

in code.

Dynamic code analysis advantages:

It identifies vulnerabilities in a runtime environment.

It allows for analysis of applications in which you do not have access to the actual code.

It identifies vulnerabilities that might have been false negatives in the static code analysis.

It permits you to validate static code analysis findings.

It can be conducted against any application.

Dynamic code analysis limitations:

Automated tools provide a false sense of security that everything is being addressed.

Cannot guarantee the full test coverage of the source code

Automated tools produce false positives and false negatives.

Automated tools are only as good as the rules they are using to scan with.

It is more difficult to trace the vulnerability back to the exact location in the code, taking longer to fix the

problem.

What is Software Testing:
Software testing can be stated as the process of verifying and validating that a software
or application is bug free, meets the technical requirements as guided by it’s design and
development and meets the user requirements effectively and efficiently with handling
all the exceptional and boundary cases.

 TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by URMILA MAHOR

Applications of Software Testing

 Cost Effective Development - Early testing saves both time and cost in many aspects,
however reducing the cost without testing may result in improper design of a software
application rendering the product useless.

 Product Improvement - During the SDLC phases, testing is never a time-consuming
process. However diagnosing and fixing the errors identified during proper testing is a time-
consuming but productive activity.

 Test Automation - Test Automation reduces the testing time, but it is not possible to start
test automation at any time during software development. Test automaton should be started
when the software has been manually tested and is stable to some extent. Moreover, test
automation can never be used if requirements keep changing.

 Quality Check - Software testing helps in determining following set of properties of any
software such as

o Functionality

o Reliability

o Usability

o Efficiency

o Maintainability

o Portability

The process of software testing aims not only at finding faults in the existing software
but also at finding measures to improve the software in terms of efficiency, accuracy
and usability. It mainly aims at measuring specification, functionality and performance of
a software program or application.

Software testing can be divided into two steps:
1. Verification: it refers to the set of tasks that ensure that software correctly
implements a specific function.
2. Validation: it refers to a different set of tasks that ensure that the software that has
been built is traceable to customer requirements.
Verification: “Are we building the product right?”
Validation: “Are we building the right product?”

Verification & Validation

These two terms are very confusing for most people, who use them interchangeably.
The following table highlights the differences between verification and validation.

 TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by URMILA MAHOR

Sr.No. Verification Validation

1 Verification addresses the concern: "Are you building it

right?"

Validation addresses the

concern: "Are you building the

right thing?"

2 Ensures that the software system meets all the

functionality.

Ensures that the functionalities

meet the intended behavior.

3 Verification takes place first and includes the checking

for documentation, code, etc.

Validation occurs after

verification and mainly involves

the checking of the overall

product.

4 Done by developers. Done by testers.

5 It has static activities, as it includes collecting reviews,

walkthroughs, and inspections to verify a software.

It has dynamic activities, as it

includes executing the software

against the requirements.

6 It is an objective process and no subjective decision

should be needed to verify a software.

It is a subjective process and

involves subjective decisions

on how well a software works.

What are different types of software testing?
Software Testing can be broadly classified into two types:

1. Manual Testing: Manual testing includes testing a software manually, i.e., without
using any automated tool or any script. In this type, the tester takes over the role of an
end-user and tests the software to identify any unexpected behavior or bug. There are
different stages for manual testing such as unit testing, integration testing, system
testing, and user acceptance testing.

 TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by URMILA MAHOR

Testers use test plans, test cases, or test scenarios to test a software to ensure the
completeness of testing. Manual testing also includes exploratory testing, as testers
explore the software to identify errors in it.

2. Automation Testing: Automation testing, which is also known as Test Automation, is
when the tester writes scripts and uses another software to test the product. This
process involves automation of a manual process. Automation Testing is used to re-run
the test scenarios that were performed manually, quickly, and repeatedly.
Apart from regression testing, automation testing is also used to test the application
from load, performance, and stress point of view. It increases the test coverage,
improves accuracy, and saves time and money in comparison to manual testing.

What are different techniques of Software Testing?
Software techniques can be majorly classified into two categories:

1. Black Box Testing: The technique of testing in which the tester doesn’t have access
to the source code of the software and is conducted at the software interface without
concerning with the internal logical structure of the software is known as black box
testing.
2. White-Box Testing: The technique of testing in which the tester is aware of the
internal workings of the product, have access to it’s source code and is conducted by
making sure that all internal operations are performed according to the specifications is
known as white box testing.

BLACK BOX TESTING WHITE BOX TESTING

Internal workings of an application are

not required. Knowledge of the internal workings is must.

Also known as closed box/data driven

testing. Also knwon as clear box/structural testing.

End users, testers and developers. Normally done by testers and developers.

THis can only be done by trial and error Data domains and internal boundaries can be

 TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by URMILA MAHOR

BLACK BOX TESTING WHITE BOX TESTING

method. better tested.

What are different levels of software testing?
Software level testing can be majorly classified into 4 levels:

1. Unit Testing: A level of the software testing process where individual
units/components of a software/system are tested. The purpose is to validate that each
unit of the software performs as designed.
2. Integration Testing: A level of the software testing process where individual units
are combined and tested as a group. The purpose of this level of testing is to expose
faults in the interaction between integrated units.
3. System Testing: A level of the software testing process where a complete,
integrated system/software is tested. The purpose of this test is to evaluate the system’s
compliance with the specified requirements.
4. Acceptance Testing: A level of the software testing process where a system is
tested for acceptability. The purpose of this test is to evaluate the system’s compliance
with the business requirements and assess whether it is acceptable for delivery.

Types of Black Box Testing:

1. Functionality Testing

https://www.softwaretestingmaterial.com/istqb-quiz/

 TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by URMILA MAHOR

2. Non-functionality Testing
Functional testing:
In simple words, what the system actually does is functional testing. To verify that
each function of the software application behaves as specified in the requirement
document. Testing all the functionalities by providing appropriate input to verify
whether the actual output is matching the expected output or not. It falls within
the scope of black box testing and the testers need not concern about the source
code of the application.

Non-functional testing:
In simple words, how well the system performs is non-functionality testing. Non-
functional testing refers to various aspects of the software such as performance,
load, stress, scalability, security, compatibility etc., Main focus is to improve the
user experience on how fast the system responds to a request.

Testing Artifacts:
Test Artifacts are the deliverables which are given to the stakeholders of a
software project. A software project which follows SDLC undergoes the different
phases before delivering to the customer. In this process, there will be some
deliverables in every phase. Some of the deliverables are provided before the
testing phase commences and some are provided during the testing phase and
rest after the testing phase is completed.

Some of the test deliverables are as follows:

 Test plan
 Traceability matrix
 Test case
 Test script
 Test suite
 Test data or Test Fixture
 Test harness

Black-Box Testing

The technique of testing without having any knowledge of the interior workings of the

application is called black-box testing. The tester is oblivious to the system architecture and

does not have access to the source code. Typically, while performing a black-box test, a tester

 TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by URMILA MAHOR

will interact with the system's user interface by providing inputs and examining outputs without

knowing how and where the inputs are worked upon.

The following table lists the advantages and disadvantages of black-box testing.

Advantages Disadvantages

Well suited and efficient for large code segments. Limited coverage, since only a selected

number of test scenarios is actually

performed.

Code access is not required. Inefficient testing, due to the fact that the

tester only has limited knowledge about an

application.

Clearly separates user's perspective from the

developer's perspective through visibly defined

roles.

Blind coverage, since the tester cannot target

specific code segments or errorprone areas.

Large numbers of moderately skilled testers can test

the application with no knowledge of

implementation, programming language, or

operating systems.

The test cases are difficult to design.

White-Box Testing

White-box testing is the detailed investigation of internal logic and structure of the code. White-

box testing is also called glass testing or open-box testing. In order to perform white-

box testing on an application, a tester needs to know the internal workings of the code.

The tester needs to have a look inside the source code and find out which unit/chunk of the code

is behaving inappropriately.

The following table lists the advantages and disadvantages of white-box testing.

 TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by URMILA MAHOR

Advantages Disadvantages

As the tester has knowledge of the source code, it

becomes very easy to find out which type of data

can help in testing the application effectively.

Due to the fact that a skilled tester is needed to

perform white-box testing, the costs are

increased.

It helps in optimizing the code. Sometimes it is impossible to look into every nook

and corner to find out hidden errors that may

create problems, as many paths will go untested.

Extra lines of code can be removed which can bring

in hidden defects.

It is difficult to maintain white-box testing, as it

requires specialized tools like code analyzers and

debugging tools.

Due to the tester's knowledge about the code,

maximum coverage is attained during test scenario

writing.

Grey-Box Testing

Grey-box testing is a technique to test the application with having a limited knowledge of the

internal workings of an application. In software testing, the phrase the more you know, the

better carries a lot of weight while testing an application.

Mastering the domain of a system always gives the tester an edge over someone with limited

domain knowledge. Unlike black-box testing, where the tester only tests the application's user

interface; in grey-box testing, the tester has access to design documents and the database.

Having this knowledge, a tester can prepare better test data and test scenarios while making a

test plan.

Advantages Disadvantages

Offers combined benefits of black-box and Since the access to source code is not available, the ability

 TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by URMILA MAHOR

white-box testing wherever possible. to go over the code and test coverage is limited.

Grey box testers don't rely on the source

code; instead they rely on interface

definition and functional specifications.

The tests can be redundant if the software designer has

already run a test case.

Based on the limited information available,

a grey-box tester can design excellent test

scenarios especially around communication

protocols and data type handling.

Testing every possible input stream is unrealistic because

it would take an unreasonable amount of time; therefore,

many program paths will go untested.

The test is done from the point of view of

the user and not the designer.

A Comparison of Testing Methods

The following table lists the points that differentiate black-box testing, grey-box testing, and

white-box testing.

Black-Box Testing Grey-Box Testing White-Box Testing

The internal workings of an

application need not be known.

The tester has limited knowledge of the

internal workings of the application.

Tester has full knowledge of

the internal workings of the

application.

Also known as closed-box testing,

data-driven testing, or functional

testing.

Also known as translucent testing, as the

tester has limited knowledge of the

insides of the application.

Also known as clear-box

testing, structural testing, or

code-based testing.

Performed by end-users and also by Performed by end-users and also by Normally done by testers and

 TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by URMILA MAHOR

testers and developers. testers and developers. developers.

Testing is based on external

expectations - Internal behavior of

the application is unknown.

Testing is done on the basis of high-level

database diagrams and data flow

diagrams.

Internal workings are fully

known and the tester can

design test data accordingly.

It is exhaustive and the least time-

consuming.

Partly time-consuming and exhaustive. The most exhaustive and time-

consuming type of testing.

Not suited for algorithm testing. Not suited for algorithm testing. Suited for algorithm testing.

This can only be done by trial-and-

error method.

Data domains and internal boundaries

can be tested, if known.

Data domains and internal

boundaries can be better

tested.

Regression Testing

Whenever a change in a software application is made, it is quite possible that other
areas within the application have been affected by this change. Regression testing is
performed to verify that a fixed bug hasn't resulted in another functionality or business
rule violation. The intent of regression testing is to ensure that a change, such as a bug
fix should not result in another fault being uncovered in the application.

Regression testing is important because of the following reasons −

 Minimize the gaps in testing when an application with changes made has to be tested.

 Testing the new changes to verify that the changes made did not affect any other area of the
application.

 Mitigates risks when regression testing is performed on the application.

 Test coverage is increased without compromising timelines.

 Increase speed to market the product.

 TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by URMILA MAHOR

Load Testing

It is a process of testing the behavior of a software by applying maximum load in terms
of software accessing and manipulating large input data. It can be done at both normal
and peak load conditions. This type of testing identifies the maximum capacity of
software and its behavior at peak time.

Most of the time, load testing is performed with the help of automated tools such as
Load Runner, AppLoader, IBM Rational Performance Tester, Apache JMeter, Silk
Performer, Visual Studio Load Test, etc.

Virtual users (VUsers) are defined in the automated testing tool and the script is
executed to verify the load testing for the software. The number of users can be
increased or decreased concurrently or incrementally based upon the requirements.

Stress Testing

Stress testing includes testing the behavior of a software under abnormal conditions.
For example, it may include taking away some resources or applying a load beyond the
actual load limit.

The aim of stress testing is to test the software by applying the load to the system and
taking over the resources used by the software to identify the breaking point. This
testing can be performed by testing different scenarios such as −

 Shutdown or restart of network ports randomly

 Turning the database on or off

 Running different processes that consume resources such as CPU, memory, server, etc.

Usability Testing

Usability testing is a black-box technique and is used to identify any error(s) and
improvements in the software by observing the users through their usage and
operation.

According to Nielsen, usability can be defined in terms of five factors, i.e. efficiency of
use, learn-ability, memory-ability, errors/safety, and satisfaction. According to him, the
usability of a product will be good and the system is usable if it possesses the above
factors.

Nigel Bevan and Macleod considered that usability is the quality requirement that can
be measured as the outcome of interactions with a computer system. This requirement
can be fulfilled and the end-user will be satisfied if the intended goals are achieved
effectively with the use of proper resources.

 TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by URMILA MAHOR

Molich in 2000 stated that a user-friendly system should fulfill the following five goals,
i.e., easy to Learn, easy to remember, efficient to use, satisfactory to use, and easy to
understand.

Security Testing

Security testing involves testing a software in order to identify any flaws and gaps from
security and vulnerability point of view. Listed below are the main aspects that security
testing should ensure −

 Confidentiality

 Integrity

 Authentication

 Availability

 Authorization

 Non-repudiation

 Software is secure against known and unknown vulnerabilities

 Software data is secure

 Software is according to all security regulations

 Input checking and validation

 SQL insertion attacks

 Injection flaws

 Session management issues

 Cross-site scripting attacks

 Buffer overflows vulnerabilities

 Directory traversal attacks

Portability Testing

Portability testing includes testing a software with the aim to ensure its reusability and
that it can be moved from another software as well. Following are the strategies that
can be used for portability testing −

 Transferring an installed software from one computer to another.

 Building executable (.exe) to run the software on different platforms.

 TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by URMILA MAHOR

Portability testing can be considered as one of the sub-parts of system testing, as this
testing type includes overall testing of a software with respect to its usage over
different environments. Computer hardware, operating systems, and browsers are the
major focus of portability testing. Some of the pre-conditions for portability testing are
as follows −

 Software should be designed and coded, keeping in mind the portability requirements.

 Unit testing has been performed on the associated components.

 Integration testing has been performed.

 Test environment has been established.

Testing documentation involves the documentation of artifacts that should be
developed before or during the testing of Software.

Documentation for software testing helps in estimating the testing effort required, test
coverage, requirement tracking/tracing, etc. This section describes some of the
commonly used documented artifacts related to software testing such as −

 Test Plan

 Test Scenario

 Test Case

 Traceability Matrix

Test Plan

A test plan outlines the strategy that will be used to test an application, the resources
that will be used, the test environment in which testing will be performed, and the
limitations of the testing and the schedule of testing activities. Typically the Quality
Assurance Team Lead will be responsible for writing a Test Plan.

A test plan includes the following −

 Introduction to the Test Plan document

 Assumptions while testing the application

 List of test cases included in testing the application

 List of features to be tested

 What sort of approach to use while testing the software

 List of deliverables that need to be tested

 The resources allocated for testing the application

 Any risks involved during the testing process

 A schedule of tasks and milestones to be achieved

 TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by URMILA MAHOR

Test Scenario

It is a one line statement that notifies what area in the application will be tested. Test
scenarios are used to ensure that all process flows are tested from end to end. A
particular area of an application can have as little as one test scenario to a few
hundred scenarios depending on the magnitude and complexity of the application.

The terms 'test scenario' and 'test cases' are used interchangeably, however a test
scenario has several steps, whereas a test case has a single step. Viewed from this
perspective, test scenarios are test cases, but they include several test cases and the
sequence that they should be executed. Apart from this, each test is dependent on the
output from the previous test.

Test Case

Test cases involve a set of steps, conditions, and inputs that can be used while
performing testing tasks. The main intent of this activity is to ensure whether a software
passes or fails in terms of its functionality and other aspects. There are many types of
test cases such as functional, negative, error, logical test cases, physical test cases, UI
test cases, etc.

Furthermore, test cases are written to keep track of the testing coverage of a software.
Generally, there are no formal templates that can be used during test case writing.
However, the following components are always available and included in every test
case −

 Test case ID

 TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by URMILA MAHOR

 Product module

 Product version

 Revision history

 Purpose

 Assumptions

 Pre-conditions

 Steps

 Expected outcome

 Actual outcome

 Post-conditions

Many test cases can be derived from a single test scenario. In addition, sometimes
multiple test cases are written for a single software which are collectively known as test
suites.

Traceability Matrix

Traceability Matrix (also known as Requirement Traceability Matrix - RTM) is a table
that is used to trace the requirements during the Software Development Life Cycle. It
can be used for forward tracing (i.e. from Requirements to Design or Coding) or
backward (i.e. from Coding to Requirements). There are many user-defined templates
for RTM.

Each requirement in the RTM document is linked with its associated test case so that
testing can be done as per the mentioned requirements. Furthermore, Bug ID is also
included and linked with its associated requirements and test case. The main goals for
this matrix are −

 Make sure the software is developed as per the mentioned requirements.

 Helps in finding the root cause of any bug.

 Helps in tracing the developed documents during different phases of SDLC.

Estimating the efforts required for testing is one of the major and important tasks in
SDLC. Correct estimation helps in testing the software with maximum coverage. This
section describes some of the techniques that can be useful in estimating the efforts
required for testing.

Functional Point Analysis

This method is based on the analysis of functional user requirements of the software
with the following categories −

 TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by URMILA MAHOR

 Outputs

 Inquiries

 Inputs

 Internal files

 External files

Test Point Analysis

This estimation process is used for function point analysis for black-box or acceptance
testing. The main elements of this method are: Size, Productivity, Strategy, Interfacing,
Complexity, and Uniformity.

Mark-II Method

It is an estimation method used for analyzing and measuring the estimation based on
end-user’s functional view. The procedure for Mark-II method is as follows −

 Determine the viewpoint

 Purpose and type of count

 Define the boundary of count

 Identify the logical transactions

 Identify and categorize data entity types

 Count the input data element types

 Count the functional size

Testing and Debugging

Testing − It involves identifying bug/error/defect in a software without correcting it.
Normally professionals with a quality assurance background are involved in bugs
identification. Testing is performed in the testing phase.

Debugging − It involves identifying, isolating, and fixing the problems/bugs.
Developers who code the software conduct debugging upon encountering an error in
the code. Debugging is a part of White Box Testing or Unit Testing. Debugging can be
performed in the development phase while conducting Unit Testing or in phases while
fixing the reported bugs.

Testing Tools:

 TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by URMILA MAHOR

Tools from a software testing context can be defined as a product that supports one or
more test activities right from planning, requirements, creating a build, test execution,
defect logging and test analysis.

Classification of Tools

Tools can be classified based on several parameters. They include:

 The purpose of the tool

 The Activities that are supported within the tool

 The Type/level of testing it supports

 The Kind of licensing (open source, freeware, commercial)

 The technology used

Types of Tools:

S.No. Tool Type Used for Used by

1. Test Management Tool Test Managing, scheduling, defect logging, tracking
and analysis.

testers

2. Configuration management
tool

For Implementation, execution, tracking changes All Team
members

3. Static Analysis Tools Static Testing Developers

4. Test data Preparation Tools Analysis and Design, Test data generation Testers

5. Test Execution Tools Implementation, Execution Testers

6. Test Comparators Comparing expected and actual results All Team
members

 TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by URMILA MAHOR

7. Coverage measurement tools Provides structural coverage Developers

8. Performance Testing tools Monitoring the performance, response time Testers

9. Project planning and Tracking
Tools

For Planning Project
Managers

10. Incident Management Tools For managing the tests Testers

Tools Implementation - process

 Analyse the problem carefully to identify strengths, weaknesses and opportunities

 The Constraints such as budgets, time and other requirements are noted.

 Evaluating the options and Shortlisting the ones that are meets the requirement

 Developing the Proof of Concept which captures the pros and cons

 Create a Pilot Project using the selected tool within a specified team

 Rolling out the tool phase wise across the organization

Structured Analysis vs. Object Oriented Analysis

The Structured Analysis/Structured Design (SASD) approach is the traditional
approach of software development based upon the waterfall model. The phases of
development of a system using SASD are −

 Feasibility Study

 Requirement Analysis and Specification

 System Design

 Implementation

 Post-implementation Review

Now, we will look at the relative advantages and disadvantages of structured analysis
approach and object-oriented analysis approach.

 TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by URMILA MAHOR

Advantages/Disadvantages of Object Oriented Analysis

Advantages Disadvantages

Focuses on data rather than the procedures as in

Structured Analysis.

Functionality is restricted within objects. This may pose

a problem for systems which are intrinsically procedural

or computational in nature.

The principles of encapsulation and data hiding help

the developer to develop systems that cannot be

tampered by other parts of the system.

It cannot identify which objects would generate an

optimal system design.

The principles of encapsulation and data hiding help

the developer to develop systems that cannot be

tampered by other parts of the system.

The object-oriented models do not easily show the

communications between the objects in the system.

It allows effective management of software complexity

by the virtue of modularity.

All the interfaces between the objects cannot be

represented in a single diagram.

It can be upgraded from small to large systems at a

greater ease than in systems following structured

analysis.

Advantages/Disadvantages of Structured Analysis

Advantages Disadvantages

As it follows a top-down approach in contrast to

bottom-up approach of object-oriented analysis, it

can be more easily comprehended than OOA.

In traditional structured analysis models, one phase

should be completed before the next phase. This poses

a problem in design, particularly if errors crop up or

requirements change.

It is based upon functionality. The overall purpose

is identified and then functional decomposition is

The initial cost of constructing the system is high, since

the whole system needs to be designed at once

 TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by URMILA MAHOR

done for developing the software. The emphasis

not only gives a better understanding of the

system but also generates more complete

systems.

leaving very little option to add functionality later.

The specifications in it are written in simple English

language, and hence can be more easily analyzed

by non-technical personnel.

It does not support reusability of code. So, the time and

cost of development is inherently high.

